Posts

Showing posts from June, 2014

The effects of calcitriol treatment in glucocorticoid resistant asthma

The current and most effective treatment for asthma therapy is the use of glucocorticoids by improving the clinical features and airway inflammation associated with asthma. However, a cohort of well-defined asthma patients exists in whom high-dose glucocorticoid treatment is not only clinically ineffective, but potentially detrimental.  Several mechanisms have been proposed to contribute to glucocorticoid resistance, including vitamin D insufficiency. Nanzer et al recently published data that glucocorticoid resistant patients fail to synthesize the anti-inflammatory cytokine interleukin-10 (IL-10) in response to glucocorticoid in vitro compared to glucocorticoid sensitive patients ( J Allergy Clin Immunol 2014; 133(6): 1755-1757 ). When resistant patients ingested a form of vitamin D called calcitriol (1,25-dihydroxyvitamin D3) in combination with glucocorticoid, levels of IL-10 were restored in vivo and ex-vivo. Taken together, these data along with epidemiological evidence linkin...

Mechanisms underlying the neuronal based symptoms of allergy

People with allergies often present with symptoms that are the result of alterations in the nervous system in the organ in which the reaction occurs. Common neuronal symptoms include itchy eyes, sneezing, nasal congestion, rhinorrhea, cough, bronchoconstriction, airway mucus secretion, dysphagia, altered gastrointestinal motility, and itchy swollen skin. Mediators released during an allergic reaction interact with sensory nerves, altering the transmission of signals in the sympathetic and parasympathetic autonomic nerves. Undem and Taylor-Clark describe how the nervous system itself is altered in allergic disease either due to events occurring during critical periods of neuronal development or to persistent nerve stimulation ( J Allergy Clin Immunol 2014; 133(6): 1521-1534 ) . Those that suffer from allergic rhinitis for example, more often react strongly by sneezing when stimulants are applied to the nasal mucosa compared to healthy controls. Considering sneezing is a parasympathetic ...

Potential food allergens in medications

Excipients are all of the substances found in pharmaceuticals that are added to the active ingredient to provide a benefit in manufacturing, stability, bioavailability, or patient acceptability.  Some excipients are foods or substances derived from foods.  Food allergic patients may rarely have reactions to these products. In his review, John M. Kelso, MD details which food-derived substances are used as pharmaceutical excipients and in which medications. Furthermore, the safety of administration of these medications in food allergic patients is also discussed ( J Allergy Clin Immunol 2014; 133(6): 1509-1518 ).  Food allergens are proteins that can generate IgE-mediated responses in food-allergic individuals. Since some food-derived excipients in medications are proteins, there is potential for an allergic response.  However, in most cases there is not enough of the food protein present to cause a reaction even in an allergic individual.  For example, most influ...